Leçon 209 : Approximation d'une fonction par des fonctions régulières. Exemples et applications.

RM 2022-2023

1 Approximation de fonction par des polynômes

1.1 Formules de Taylor

Soit $I \subset \mathbb{R}$ un intervalle de \mathbb{R} et soit $f: I \to \mathbb{R}$.

Définition 1: Soit $n \in \mathbb{N}^*$. On dit que f admet un développement limité d'ordre n au voisinage de $a \in I$ s'il existe $a_0, ..., a_n \in \mathbb{R}$ tels que, au voisinage de $a, f(x) = \sum_{k=0}^{n} a_k x^k + o((x-a)^n)$.

Remarque 2 : Ceci nous fournis bien une première approche de notre fonctions par des polynômes. Elle est surtout pratique pour lever des formes indéterminées de limite.

Proposition 3: Si f admet un développement limité d'ordre $n_i n \mathbb{N}^*$, il est unique.

Proposition 4: Si f admet un développement limité d'ordre $n \geq 1$ au voisinage de 0, alors $f(0) = a_0$ et f est dérivable en 0 avec $f'(0) = a_1$.

Remarque 5: On ne peut pas extrapoler pour f''(0). En effet, la fonction $f(x) = 1 + x + x^2 + x^3 \sin 1/x^2$ si $x \neq 0$ et f(0) = 1 a pour DL en $f(x) = 1 + x + x^2 + x^3 + x$

Théorème (Formule de Taylor-Young) 6 : Soit $f: I \to \mathbb{R}$ avec $a \in I$ tel que f soit dérivable n-fois en a. Alors pour tout $x \in I$, on a

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a)^{1} + \frac{f^{(2)}(a)}{2!}(x-a)^{2} + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^{n} + o((x-a)^{n}).$$

Théorème (Formule de Taylor-Lagrange) 7: Soit $f:[a,b] \to \mathbb{R}$ une application de classe \mathcal{C}^n sur [a,b], telle que $f^{(n+1)}$ existe sur]a,b[. Alors

$$\exists c \in]a, b[, \quad f(b) = f(a) + (b - a)f'(a) + \dots + \frac{(b - a)^n}{n!}f^{(n)}(a) + \frac{(b - a)^{n+1}}{(n+1)!}f^{(n+1)}(c).$$

Théorème (Formule de Taylor avec reste intégrale) 8 : Soit $f:[a,b] \to \mathbb{R}$ de classe \mathcal{C}^{n+1} sur [a,b]. Alors

$$f(b) = f(a) + (b-a)f'(a) + \dots + \frac{(b-a)^n}{n!}f^{(n)}(a) + \int_a^b \frac{(b-t)^n}{n!}f^{(n+1)}(t)dt.$$

1.2 Fonctions continues sur un compact

Proposition 9: Soit $f: E \to \mathbb{R}$ une application continue, où E est compact. Alors f est bornée et atteint ses bornes.

Théorème (de Heine) 10 : Soit $f: E \to E'$ une application continue avec E compact. Alors f est uniformément continue.

Remarque 11 : La compacité est importante, c'est pour cela que la fonction carré n'est pas uniformément continue sur \mathbb{R} .

Développement (Théorème de Weierstrass) 12 : Soit [a,b] un segment de $\mathbb R$ est soit $f:[a,b]\to\mathbb C$ une fonction continue. Alors f est limite uniforme sur [a,b] d'une suite de fonctions polynomial.

Remarque 13: On peut aussi traduire ce théorème par le fait que les fonctions polynomiales sont denses dans l'ensemble $(\mathcal{C}^0([a,b],\mathbb{C}),\|.\|_{\infty})$.

Dev 1

Corollaire (Théorème de Weierstrass trigonométrique) 14: Soit f une fonction continue de $\mathbb R$ dans $\mathbb C$ qui est 2π périodique. Alors f est limite uniforme de polynôme trigonométrique, ie de la forme $P: x \to \sum_{n=-N}^N c_n e^{inx}$.

Application 15: On en déduit du théorème de Weierstrass que si $\int_a^b g(x)x^n dx = 0$ pour tout $n \in \mathbb{N}$ et que g est continue, alors g est la fonction nulle.

1.3 Polynômes orthogonaux

 $egin{aligned} extbf{D\'efinition 16}: & ext{Soit I un intervalle de \mathbb{R}}. & ext{On appelle fonction poids une fonction} \
ho: I & ext{\rightarrow} & ext{\mathbb{R} mesurable, strictement positive et telle que $$\forall n \in \mathbb{N}$, $$\int_I |x|^n
ho(x) dx < +\infty$. \\ ext{On note $L^2(I,
ho)$ l'espace des fonctions de carr\'es int\'egrables pour la mesure de densit\'e $$
ho$ par rapport \`a la mesure de Lebesgue, c'est-\'a-dire muni du produit scalaire $$\langle f, g \rangle_{
ho} = \int_I f(x) \overline{g(x)}
ho(x) dx. \end{aligned}$

Proposition 17: L'espace $L^2(I,\rho)$ est un espace de Hilbert pour \langle , \rangle_{ρ} .

Proposition 18: Il existe une unique famille $(P_n)_{n\in\mathbb{N}}$ de polynômes unitaires orthogonaux deux à deux tels que $deg(P_n) = n$. Elle est appelé famille des polynômes orthogonaux associé à ρ .

Remarque 19 : Cela est due au procédé d'orthonormalisation de Gram-Schmidt sur $(X^n)_{n\in\mathbb{N}}$.

Exemple 20 : 1) Si $I=\mathbb{R}$ et $\rho(x)=e^{-x^2}$, alors les polynômes orthogonaux associés à ρ

sont les polynômes de Hermite. On a $P_0 = 1$, $P_1 = X$, $P_2 = X^2 - 1/2$, $P_3 = X^3 - 3/2X$. **2.2** Approximation de l'unité On a même $P_n(x) = \frac{(-1)^n}{2^n} e^{x^2} \frac{d^n}{dx^n} \left(e^{-x^2} \right)$.

2) Si I = [-1, 1] et $\rho(x) = 1$, alors les polynômes orthogonaux associés à ρ sont les polynômes de Legendre. On a $P_0 = 1, P_1 = X, P_2 = X^2 - 1/3, P_3 = X^3 - 3/5X$. On a même $P_n(x) = \frac{n!}{(2n)!} \frac{d^n}{dx^n} ((x^2 - 1)^n).$

Théorème 21: Soient I un intervalle de \mathbb{R} et ρ une fonction de poids. S'il existe $\alpha > 0$ tel que $\int_{T} e^{\alpha |x|} \rho(x) dx < +\infty$, alors la famille des polynômes orthogonaux associés à ρ forme une base hilbertienne de $L^2(I,\rho)$ pour la norme $\|.\|_{\rho}$.

Utilisation de la convolution

Définition et propriétés

Définition 22: On dit que f et q deux fonctions de \mathbb{R}^n à valeurs dans \mathbb{C} sont convolables si, pour presque tout $x \in \mathbb{R}$, la fonction $y \mapsto f(x-y)g(y)$ est intégrable sur \mathbb{R}^n . Si f et q sont convolables, on définit alors le produit de convolution (ou la convolée) de f et g par

$$(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy.$$

Propriétés 23: On a f * g = g * f et si f est convolable avec g et h, alors f est convolable avec $\alpha q + \beta h$ où $(\alpha, \beta) \in \mathbb{C}^2$ et

$$f * (\alpha g + \beta h) = \alpha (f * g) + \beta (f * h)$$

Théorème 24: Soit f, g, h dans $L^1(\mathbb{R}^n)$. Alors

- i) $f * g \in L^1(\mathbb{R}^n)$ et on a $||f * g||_1 < ||f||_1 ||g||_1$.
- ii) (f * q) * h = f * (q * h).
- iii) si $f_n \xrightarrow[n \to +\infty]{} f$ dans $L^1(\mathbb{R}^n)$ et $g_n \xrightarrow[n \to +\infty]{} g$ dans $L^1(\mathbb{R}^n)$, alors $f_n * g_n \xrightarrow[n \to +\infty]{} f * g$ dans $L^1(\mathbb{R})$.

Théorème 25 : Soit $f \in L^1(\mathbb{R}^n)$ et $p \in \mathbb{N}^*$.

i) Si $g \in L^p(\mathbb{R}^n)$, alors $f * g \in L^p(\mathbb{R}^n)$ et on a $||f * g||_p \le ||f||_1 ||g||_p$.

Si $g \in L^{\infty}(\mathbb{R}^n)$, alors $f * g \in L^{\infty}(\mathbb{R}^n)$ et on a $||f * g||_{\infty} \le ||f||_1 ||g||_{\infty}$. De plus, f * gest uniformément continue sur \mathbb{R}^n .

Remarque 26: L'espace $(L^1(\mathbb{R}^n), +, ., *)$ est une algèbre commutative sans élément neutre. Ceci nous motive alors a créer des fonctions ressemblant à une unité.

Définition 27: Soit $(\varphi_n)_{n\geq 1}$ une suite de fonctions positives et intégrables sur \mathbb{R}^n . On dit que la suite $(\varphi_n)_{n\geq 1}$ est une unité approchée ou approximation de l'unité si

- i) $\int_{BB^n} \varphi_n(x) dx = 1$ pour tout $n \in \mathbb{N}^*$.
- ii) Pour tout réel strictement positif a, on a

$$\lim_{n \to +\infty} \int_{\{\|x\| > a\}} \varphi_n(x) dx = 0.$$

L'unité approchée $(\varphi_n)_{n\geq 1}$ est dite compacte si toutes les fonctions φ_n s'annulent en dehors d'un compact de \mathbb{R}^n .

Exemple 28: On définit pour $n \in \mathbb{N}$ la suite de réels $a_n = \int_{-1}^1 (1-t^2)^n dt$ et la suite suivante

$$p_n: \mathbb{R} \to \mathbb{C}$$

$$t \mapsto \begin{cases} (1-t^2)^n/a_n & \text{si } |t| < 1 \\ 0 & \text{sinon} \end{cases}$$

Alors (p_n) est une approximation de l'unité.

Théorème 29 : Soit $(\varphi_n)_{n\geq 1}$ une approximation de l'unité. Alors, pour toute fonction $f \in L^p(\mathbb{R}^n)$, on a $\varphi_n * f \in L^p(\mathbb{R}^n)$ pour tout $n \in \mathbb{N}^*$ et $\varphi_n * f$ converge uniformément vers f.

Remarque 30 : Ceci nous permet une démonstration du théorème de Weierstrass introduit plus tôt.

Théorème (Densité) 31: i) Les fonctions de $\mathbb R$ dans $\mathbb K$ à support compact de classe \mathcal{C}^{∞} ($\mathcal{C}^{\infty}_{\mathcal{K}}(\mathbb{R},\mathbb{K})$ est dense dans les fonctions de \mathbb{R} dans \mathbb{K} à support compact pour la norme $\|.\|_{\infty}$.

Pour tout $p \in [1, +\infty[$, $C_K^{\infty}(\mathbb{R}, \mathbb{K})$ est dense dans $L^p(\lambda)$ pour $\|.\|_p$.

L'espace $\mathcal{C}_b^{\infty}(\mathbb{R},\mathbb{K})$ est dense dans l'ensemble des fonctions uniformément continue bornée à valeur dans K pour $\|.\|_{\infty}$.

Remarque 32: Par propriété de la densité, cela nous fournit des approximation.

Approximation grâce aux séries de Fourier

3.1Polynômes et séries trigonométriques

Définition 33: On appelle polynôme trigonométrique de degré $\leq N$ ($N \in \mathbb{N}$) de la variable réelle x toute fonction de la forme $x \mapsto \sum_{n=-N} Nc_n einx$ ($c_n \in \mathbb{C}$). C'est une fonction continue 2_ni -périodique.

Définition 34: On appelle série trigonométrique une série de fonctions de la forme $\sum_{n\in\mathbb{Z}} c_n e^{inx}$.

Remarque 35: On peut aussi l'écrire de la forme $a_0/2 + \sum_{n \in \mathbb{N}^*} (a_n \cos nx + b_n \sin nx)$ ou a_n et b_n sont reliés à c_n par $a_n = c_n + c_{-n}$ et $b_n = i(c_n - c_{-n})$.

Définition 36: Soit $f: \mathbb{R} \to \mathbb{C}$ une application 2π -périodique et continue par morceaux sur \mathbb{R} . On appelle coefficients de Fourrier exponentielle et trigonométrique de f les nombres complexes définis par $\forall n \in \mathbb{Z}$, $c_n(f) = 1/2\pi \int_0^{2\pi} f(t)e^{-int}dt, \forall n \in \mathbb{N}$ $a_n(f) = 1/\pi \int_0^{2\pi} f(t) \cos nt dt$ et $\forall n \in \mathbb{N}^*$, $b_n(f) = A/\pi \int_0^{2\pi} f(t) \sin nt dt$. On appelle série de Fourrier associé à f la série trigonométrique $\sum_{n \in \mathbb{Z}} c_n(f)e^{inx}$ ou $a_0(f)/2 + \sum_{n \in \mathbb{N}^*} (a_n(f) \cos nx + b_n(f) \sin nx)$.

Remarque 37 : On va montrer après des cas de convergence.

Proposition 38: En posant $b_0(f)=0$, on a pour tout $n\in\mathbb{N}$ que $a_n(f)=c_n(f)+c_{-n}(f)$ et $b_n(f)=i(c_n(f)-c_{-n}(f))$.

Proposition 39: Soit f une fonction continue et de classe \mathcal{C}^1 par morceaux sur $[0,2\pi]$. Alors f' est continue par morceaux et 2π -périodique, et on a pour tout $n \in \mathbb{Z}, c_n(f') = inc_n(f)$.

Remarque 40: Si f est de classe C^{k-1} sur $[0, 2\pi]$ et C^k par morceaux sur ce segment, on obtient par itération que pour tout $n \in \mathbb{Z}$, $c_n(f^{(k)}) = (in)^k c_n(f)$.

Proposition 41: Soit $f: \mathbb{R} \to \mathbb{C}$ 2π -périodique et continue par morceaux sur \mathbb{R} . Alors :

Si f est paire, alors $b_n(f) = 0$ et $a_n(f) = \frac{2}{\pi} \int_0^{\pi} f(t) \cos nt dt$. si f est impaire, alors $a_n(f) = 0$ et $b_n(f) = \frac{2}{\pi} \int_0^{\pi} f(t) \sin nt dt$.

3.2 Propriétés et applications des séries de Fourier

Théorème (Égalité de Parseval) 42 : Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique et continue par morceaux.

Alors les séries $\sum_{n\in\mathbb{Z}} |c_n(f)|^2$, $\sum |a_n(f)|^2$, $\sum |b_n(f)|^2$ convergent et on a

$$\sum_{-\infty}^{+\infty} |c_n(f)|^2 = \frac{|a_0(f)|^2}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} |a_n(f)|^2 + \frac{1}{2} \sum_{n=1}^{+\infty} |b_n(f)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt$$

Théorème (**Riemann-Lebesgue**) 43 : Soit $f: I = [a,b] \to \mathbb{C}$ une fonction continue par morceaux et intégrable sur un intervalle I de \mathbb{R} . Alors $\lim_{|x| \to +\infty} \int_a^b f(t)e^{ixt}dt =$

0.

Théorème (Jordan-Dirichlet) 44 : • Si f est 2π -périodique et de classe \mathcal{C}^1 par morceaux, alors pour tout $x \in \mathbb{R}$, la série de Fourrier de f converge en ce point x vers $\frac{f(x^+)+f(x^-)}{2}$. En particulier, si f est continue en x, la série de Fourrier de f en x converge vers f(x).

• Si $f: \mathbb{R} \to \mathbb{C}$ est une fonction 2π -périodique, continue et \mathcal{C}^1 par morceaux, alors la série de Fourrier de f converge normalement vers f sur \mathbb{R} .

Application 45: Ceci nous permet de calculer par exemple les $\zeta(2k)$ pour $k \in \mathbb{N}$ avec $\zeta(k) = \sum_{n=1}^{+\infty} \frac{1}{n^k}$.

Exemple/Application 46: En étudiant les coefficients de Fourrier de $f(x) = 1 - \frac{x^2}{\pi^2}$ sur $[-\pi, \pi]$, on en déduit que $\zeta(2) = \pi^2/6$, $\zeta(4) = \pi^4/90$, $\sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2} = \pi^2/8$.

| Application 47: Nous avons les résultats suivants pour les intégrales de Fresnel: $\int_0^{+\infty} \sin(t^2) dt = \frac{1}{2} \sqrt{\frac{\pi}{2}}$ et $\int_0^{+\infty} \cos(t^2) dt = \frac{1}{2} \sqrt{\frac{\pi}{2}}$.

Dev 2

Références:

- 1. Analyse Gourdon
- 2. Suites et séries ... El Amrani
- 3. 131 dvp Lesevre
- 4. Mesure, convolution ... El haj laamri
- 5. théorie de l'intégration Brian Pages
- 6. Objectif agrégation Beck